Die Koordinationschemie C=S-funktioneller Verbindungen

VII *. Elektrophiler und nukleophiler Angriff an Wolfram-CS₂-Komplexen

Wolfdieter A. Schenk *, Dagmar Kuemmerle und Thomas Schwietzke

Institut für Anorganische Chemie der Universität, Am Hubland, 8700 Würzburg (B.R.D.) (Eingegangen den 1. Februar 1988)

Abstract

Five different tungsten CS₂ complexes of the type $[W(CO)_3(diphosphine)(CS_2)]$ have been synthesized and their reactivity towards various electrophiles and nucleophiles has been studied. Methyl iodide alkylates the exocyclic sulfur atom, and thiiranes react by ring expansion to give 1,3-dithiolane-2-thione complexes. Coordinatively unsaturated metal fragments also add at the exocyclic sulfur to give CS₂-bridged binuclear compounds. Tributyl phosphine attacks either at carbon or at the endocyclic sulfur, depending on the nature of the diphosphine ligand, to give complexes of the betaine Bu₃P · CS₂ and thiocarbonyl compounds, respectively. Hydride reagents transfer H⁻ to the carbon atom of the CS₂ complexes, but the alkylated CS₂ ligand is cleaved to give alkyl mercaptan and CS complex. Lithium alkyls give rise to thiophilic attack at the endocyclic sulfur, also to give alkyl mercaptan and CS complex.

Zusammenfassung

Fünf verschiedene Wolfram-CS₂-Komplexe des Typs $[W(CO)_3(diphosphin)(CS_2)]$ wurden synthetisiert und auf ihre Reaktivität gegenüber verschiedenen Elektrophilen und Nukleophilen untersucht. Methyliodid alkyliert das exocyclische Schwefelatom, Thiirane reagieren unter Ringerweiterung zu 1,3-Dithiolan-2-thion-Komplexen. Koordinativ ungesättigte Metallfragmente addieren sich ebenfalls am *exo*-Schwefel unter Bildung von CS₂-verbrückten zweikernigen Verbindungen. Tributylphosphin greift je nach Natur des Diphosphin-Liganden am Kohlenstoff oder am endocyclischen Schwefelatom an, wobei Komplexe des Betains $Bu_3P \cdot CS_2$ bzw. Thiocarbonylverbindungen gebildet werden. Hydridreagenzien übertragen H⁻ auf

^{*} Für Mitteilung VI siehe Ref. 1.

den Kohlenstoff der CS₂-Komplexe, der alkylierte CS₂-Ligand wird hingegen zu Alkylmercaptan und CS-Komplex gespalten. Lithiumalkyle greifen thiophil am endo-Schwefel an, wobei ebenfalls Alkylmercaptan und CS-Komplex gebildet werden.

Einleitung

Das Heterocumulen CS₂ weist eine bemerkenswert vielseitige Koordinationschemie auf. Nach der Entdeckung des ersten CS₂-Komplexes durch Baird und Wilkinson [2] richtete sich das Interesse zunächst auf Verbindungen der Eisenund Platinmetalle, hierüber liegen mehrere zusammenfassende Arbeiten vor [3-7]. Die früheren Übergangsmetalle wie Ti [8,9], V [10–12], Nb [13–15], Cr [16], Mo [17] und Mn [18-20] fanden bisher verhältnismässig wenig Berücksichtigung [21*]. Wir berichten im folgenden über Synthese und Reaktivität der ersten Wolfram-CS₂-Komplexe 1-5. Einige Aspekte dieser Arbeit sind bereits in Kurzmitteilungen veröffentlicht [22-24].

$$\begin{array}{ccc} 0 & R_2 P & PR_2 = Ph_2 PC_2 H_4 PPh_2 \ (dppe), \end{array}$$

$$Ph_2PC_2H_4PMe_2 (pp'), \qquad 2$$

$$\begin{array}{ccc} \begin{array}{c} \begin{array}{c} P_{1} \\ P_{2} \\ P_{3} \end{array} & \begin{array}{c} C_{2} \\ W \\ S \end{array} & \begin{array}{c} C_{2} \\ C_{2} \\ S \end{array} & \begin{array}{c} P_{1} \\ P_{2} \\ PC_{2} \\ H_{4} \\ PMe_{2} \\ Me_{2} \\ PC_{2} \\ H_{4} \\ PMe_{2} \\ Me_{2} \\ Me_{$$

$$1,2-C_{6}H_{4}(PPh_{2})_{2} (dppb),$$
 4

$$1,2-C_6H_4(PMe_2)_2$$
 (dmpb), 5

1-5

Ergebnisse und Diskussion

1. Synthese der CS₂-Komplexe

Die Darstellung der Verbindungen 1-5 lehnt sich eng an die Synthese analoger Olefin- [25], SO₂- [26] und Dithioester-Komplexe [27] and (Gl. 1). Die photochem-

isch aus den entsprechenden Tetracarbonylderivaten leicht zugänglichen Solvens-Komplexe A (L = Ethanol, Aceton) setzen sich mit CS_2 sehr rasch zu den gewünschten CS₂-Komplexen um, die in befriedigenden Ausbeuten als orangefarbene mikrokristalline Pulver isoliert werden können.

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Die Formulierung des Reaktionsverlaufes nach Gl. 1 stützt sich auf zahlreiche Untersuchungen an nahe verwandten Systemen. Die Substitution labiler Liganden an oktaedrischen d^6 -Carbonylkomplexen verläuft generell nach einem dissoziativen Mechanismus, im koordinativ ungesättigten Fragment B ordnen sich die Donorliganden bevorzugt cis zur Koordinationslücke an [28]. An dieser Stelle muss auch der neue Ligand eintreten, so dass zunächst kinetisch kontrolliert das faciale Intermediat C entsteht, welches anschliessend intramolekular zum thermodynamisch stabileren Endprodukt isomerisiert. Bei analog durchgeführten Synthesen von Olefin-, SO₂- und Dithioesterkomplexen wurden häufig faciale Zwischenprodukte isoliert [25–27]. Eine η^1 -Koordination des CS₂ ist zwar bis heute noch nicht strukturanalytisch belegt, konnte aber in einigen Fällen spektroskopisch nachgewiesen werden [29]. Eine eingehende theoretische Studie von Hoffmann et al. legt sogar nahe, dass die Bildung von CS₂-Komplexen stets über eine η^1 -Koordination, wie in Gl. 1 gezeigt, verläuft [30]. Ein Wechsel zwischen η^1 - und η^2 -Koordination bei der fac-mer-Isomerisierung wurde schliesslich auch an Koordinationsverbindungen von Dithiocarbonsäureestern [27] und Trithiokohlensäureestern (siehe unten) gefunden.

Die meridionale Geometrie der Produkte 1–5 geht aus der Nichtäquivalenz der beiden Phosphorkerne im ³¹P-NMR-Spektrum und dem Bandenmuster der CO-Valenzschwingungsabsorptionen zweifelsfrei hervor. Die hohen ν (CO)-Werte belegen das gute Akzeptorvermögen des Liganden CS₂, die C–S-Valenzschwingung findet sich ebenfalls im erwarteten Bereich um 1100 cm⁻¹ (Tab. 1). Das pp'-Derivat 2 entsteht in Form zweier nicht trennbarer Isomerer, die sich, wie im ³¹P-NMR-Spektrum erkennbar, in der Orientierung des Chelatphosphins zum CS₂-Liganden unterscheiden.

1 und 2 erweisen sich in Lösung als recht labil (siehe unten), 1 tauscht den CS_2 -Liganden bei 25 °C mit einer Halbwertszeit von 3.6 min gegen andere Donoren aus [22]. Da diese Reaktion in Umkehrung von Gl. 1 über eine Dissoziation des CS_2 verläuft, kann der Zerfall durch Zusatz von CS_2 zur Lösung wirksam unterdrückt werden. Die Verbindungen 3–5 sind dagegen auch in Lösung stabil.

2. Umsetzungen mit Elektrophilen

(a) Methylierung. Die Elektrophilie des exozyklischen Schwefelatoms von CS_2 -Komplexen ist durch zahllose Alkylierungs- und Metallierungsreaktionen bestens belegt [3-6]. Auch die hier beschriebenen CS_2 -Komplexe erfüllen diese Erwartung (Gl. 2). Eine deutliche Abstufung der Reaktivität lässt sich erkennen: Während das

 $R_2PPR_2 = dppe: 6, pp': 7, dmpe: 8$

Verb.	IR (cm^{-1})	- <u></u>		³¹ P-NMR ^{<i>b</i>}		
	ν(CO)			$\nu(CS)^{a}$	δ(ppm)	$^{1}J(W-P)$ (Hz)	$^{2}J(P-P)$ (Hz)
1	2024w	1964m	1912s ^c	1102s	40.5		13
					37.6		
2	2021w	1962m	1902s d	1106s	38.7	197 ^e	13
	2002vw	1955sh			10.5	ء 210 1	
					41.3	220 [/]	13
					15.1	194 [/]	
3	2022w	1958m	1901s °	1094s	17.2	192	15
					11.4	204	
4	2026w	1968m	1910s ^c				
5	2025w	1959m	1906s ^c	1100s	15.8		18
					10.5		
6	2051w	1994m	1951s '	1096s			
7	2045w	1990m	1946s ^g	1096m	38.6	182 ^e	18
					19.2	205 °	
					44.1	217 ^f	18
					10.7	175 ^f	
8	2047w	1985m	1941s ^c	1098s	22.1	208	19
					12.3	170	-

Spektroskopische Daten der CS2-Komplexe und deren Methylierungsprodukte

^a Nujol. ^b CDCl₃. ^c CH₂Cl₂. ^d CS₂. ^e Isomer mit CS₂ trans zur PPh₂-Gruppe. ^f Isomer mit CS₂ trans zur PMe₂-Gruppe. ^g Ethanol.

elektronenreiche dmpe-Derivat 3 schon mit Methyliodid in Benzol rasch reagiert, benötigt man für die Verbindungen 1 und 2 ein stärker polares Lösungsmittel, um akzeptable Reaktionsgeschwindigkeiten zu erzielen. 6-8 sind weinrote luftstabile Festkörper. Die Anordung der Liganden um das Wolframatom wird durch die Alkylierung nicht verändert, wie die Spektraldaten (Tab. 1) zeigen. Auch 7 tritt wieder wie das Edukt 2 als Isomerengemisch auf. In Lösung sind 6 und 7 deutlich stabiler als ihre Vorläufer 1 und 2.

(b) Addition von Thiiranen. Dreiring-Heterocyclen werden von Nukleophilen leicht geöffnet [31]. Tatsächlich reicht die Nukleophilie der CS₂-Komplexe 1, 3 und 4 aus, um mit Thiiran und 2-Methylthiiran unter Ringerweiterung die Trithiokohlensäureester-Komplexe 9-18 zu bilden [32*] (Gl. 3). Die IR-spektroskopische Reaktionskontrolle zeigt, dass zunächst kinetisch kontrolliert die meridionalen Komplexe 9-13 entstehen, die den Trithiokohlensäureester als η^2 -Liganden gebunden enthalten. Für die dmpe-Derivate 10 und 13 ist dies auch die thermodynamisch stabilere Form, die facialen Isomere 15 und 18 können im Gleichgewicht nur IR-spektroskopisch nachgewiesen werden. Die Komplexe der weniger basischen Phosphine dppe und dppb isomerisieren dagegen glatt zu den facialen Komplexen, die den Schwefelliganden nunmehr end-on über die C=S-Funkton gebunden enthalten. Die Umlagerung ist von einem auffälligen Farbwechsel von orange nach tiefviolett begleitet. Die unabhängige Synthese aus labilen Solvenskomplexen vom Typ A (Gl. 1) und freiem Ethylentrithiocarbonat ergibt wie erwartet zunächst die facialen η^1 -Komplexe 14–16, gefolgt von der Einstellung des fac / mer-Gleichgewichts nach Gl. 3. Völlig analoge Verhältnisse haben wir schon früher in der Chemie der Dithiocarbonsäureester-Komplexe gefunden [27].

Tabelle 1

14 - 18

R ₂ P PR ₂	R'= H	R' = Me
dppe	9, 14	12,17
dmpe	10, 15	13, 18
doob	11 16	

19, 20

 R_2P $PR_3 = dppe: 19, dmpe: 20$

Thiiran-1-oxid neigt deutlich stärker zu Ringöffnungsreaktionen als Thiiran selbst [31]. In die Koordinationschemie fand es bisher vor allem als reaktive Quelle für Schwefelmonoxid Eingang [33-35], mit den Wolfram-CS₂-Komplexen setzt es sich dagegen wieder unter Ringerweiterung um (Gl. 4). Man erhält so Komplexverbindungen des bisher unbekannten Heterocyclus 1,3-Dithiolan-2-thion-1-oxid [36*]. Die Reaktion bleibt jetzt auch für das dppe-Derivat **19** auf der meridionalen Stufe stehen. Wir führen dies auf die höhere π -Akzeptorfähigkeit des oxidierten Fünfrings zurück, durch die die η^2 -koordinierte Form begünstigt wird [37*].

Die spektroskopischen Eigenschaften der Verbindungen 9-20 (Tab. 2) ähneln weitgehend denen der entsprechenden Dithiocarbonsäureester-Komplexe [27]. Der Wechsel zwischen η^1 - und η^2 -Koordination der C=S-Funktion bei Änderung der Ligandenanordnung lässt sich bereits aus der Lage der CO-Valenzschwingungsfrequenzen entnehmen. Weitere Informationen über die Konstitution dieser Verbindungen enthält ein ¹³C-NMR-Spektrum von 14, welches die Resonanz von C(2) des Ringsystems im für η^1 -Koordination der C=S-Funktion typischen Bereich bei 223.8 ppm zeigt. Aufschlussreich sind aber vor allem wieder die ³¹P-NMR-Spektren, die bei den facialen Komplexen aus Singuletts, bei den meridionalen

Verb.	IR			³¹ P-NMR ^{<i>a</i>}					
	v(CO) (c	m ⁻¹)		δ(ppm)		$^{1}J(W-P)$ (Hz)	$^{2}J(\mathbf{P}-\mathbf{P})$ (Hz)		
	2011w	1947m	1892s ^b		<u></u>				
10	2009w	1946m	1882s ^c	19.1	12.2		18		
11	2014w	1950m	1891s ^d						
12	2007w	1955m	1906s °						
		1945m	1889s						
13	2007w	1944m	1880s ^c	18.9	12.2		18		
				18.5	12.2		18		
14 °	1930s	1845s ^b		41.9		223			
15	1917s	1811s ^d							
16	1931s	1850s	1825s ^d	48.6		229			
17	1925s	1830s ^d		42.3		226			
18	1937s	1845s	1826s ^b						
19	2025w	1965m	1910s ^c	41.4			18		
				39.8					
20	2012w	1946m	1885s ^d	20.5	11.9		21		
				20.3	12.3		21		

Spektroskopische Daten der 1,3-Dithiolan-2-thion-Komplexe

^a CDCl₃. ^b Toluol. ^c CHCl₃. ^d CH₂Cl₂. ^e ¹³C-NMR (CD₂Cl₂): CS 223.8(s), CO (*trans* zu P) 216.6(dd, 8, 32 Hz), CO (*cis* zu P) 215.0 (t, 6 Hz), C₆H₅ 128–137(m), SC₂H₄S 44.1(s), PC₂H₄P 28.8 (Harris-Typ, N 41 Hz).

Verbindungen dagegen aus zwei Dubletts bestehen. Auffällig ist weiterhin die Verdopplung der Signale bei 13 und 20. Diese beiden Komplexe enthalten chirale Ringsysteme, an denen durch die η^2 -Koordination der C=S-Funktion ein weiteres Chiralitätszentrum an C(2) aufgebaut wird. Dadurch entstehen Diastereomerenpaare in ungefähr äquimolarem Verhältnis. Zusätzliche Banden im Infrarotspektrum von 12 weisen ebenfalls auf die Existenz von Isomeren hin. Mit deutlicher Enantioselektivität verläuft dagegen die Bildung von 19, dies könnte auf den höheren Raumanspruch des Phosphinliganden dppe, verglichen mit dmpe, zurückzuführen sein.

(c) Addition von Metallfragmenten. Ebenso wie die Alkylierung ist auch die Metallierung des exocyclischen Schwefelatoms von CS_2 -Komplexen durch zahlreiche Beispiele belegt. Dementsprechend wird auch 1 mit einem Gemisch der Salze $Et_4N[M(CO)_5Cl]/NaBPh_4$, einer bequem zu handhabenden Quelle für die koordinativ ungesättigten Komplexfragmente $M(CO)_5$ (M = Cr, W), in guten Ausbeuten zu den Zweikernkomplexen 21 und 22 umgesetzt (Gl. 5). Analog entsteht

M = Cr: 21, W: 22

Tabelle 2

aus 3 und dem entsprechenden Solvenskomplex das Bis(dmpe)-Derivat 23 (Gl. 6).

23

Noch einfacher erhält man 23, indem man den Ethanolkomplex analog zu G. 1, jedoch nur mit der halben stöchiometrischen Menge CS_2 umsetzt. Die labilen Komplexe 1 und 2 können in Umkehrung von Gl. 1 selbst als Quelle für ungesättigte Metallfragmente dienen. Einfaches Stehenlassen in Lösung überführt sie daher in die entsprechenden Zweikernkomplexe 24 bzw. 25 (Gl. 7). Eine ähnliche "Selbstmetallierung" wurde zuvor schon bei $[(C_5H_5)Mn(CO)_2(CS_2)]$ beobachtet [18]. 25 konnte trotz aufwendiger Reinigungsversuche nur als rotes Öl erhalten werden, die übrigen Zweikernkomplexe fallen als orangefarbene, luftstabile Pulver an. 21 und 22 erweisen sich gegenüber Triphenylphosphin bei 25°C als nicht mehr substitutionslabil. Offenbar wird durch die Koordination einer weiteren Metalleinheit die Bindung zwischen dem Tricarbonylwolfram-Fragment und der CS_2 -Gruppe signifikant verstärkt.

Die Infrarotspektren der Zweikernkomplexe (Tab. 3) bieten keinerlei Besonderheiten, die charakteristischen CO-Valenzschwingungen von η^2 - und η^1 -Komplexteil lassen sich durch einen Vergleich der Daten untereinander unschwer ausmachen. An den symmetrisch substituierten Komplexen interessierte uns von allem, ob hier auch ein rascher Austausch der η^1 - und η^2 -Koordination zwischen beiden Metallzentren stattfinden würde, wie er von Herberhold und Mitarbeitern an den Verbindungen [((MeC₆H₄CO₂Me)Cr(CO)₂)₂(μ -CS₂)] [16] und [((C₅H₅)Mn(CO)₂)₂(μ -CS₂)] [18] schon früher beobachtet worden war. Tatsächlich erweist sich 23 im ³¹P-NMR-Spektrum als starre Verbindung (24 ist in allen gebräuchlichen Solvenzien so wenig löslich, dass keine Kernresonanzspektren erhalten werden konnten). Dieser Befund entspricht eigentlich der Erwartung, wenn man berücksichtigt, dass ein Austausch der Koordinationsweisen zwischen beiden Metallzentren auf jeder Seite auch mit

24, 25

 $R_2 P P R_2 = dppe: 24, pp': 25$

Verb.	IR				³¹ P-NMR "			
	ν(CO) (cm ⁻¹)			δ(ppm)	$^{1}J(W-P)$ (Hz)	$^{2}J(P-P)$ (Hz)	
21	2058w	2035w	1973m	1 937 vs	1898m ^b	41.0 40.5	207	16
22	2065w	2037w	1975m	1935vs	1893m ^b	41.2	207	16
23	2027w	1965m	1913vs	1821s	1793s ^c	19.1^{d} 11.4^{d} 13.6^{c}	205	16
24 25	2034w 2027w	1973m 1968m	1922vs 1913vs	1834s 1824s	1808s ° 1795s °	20.0		

Spektroskopische Daten der μ -(CS₂)-Zweikernkomplexe

^a CDCl₃. ^b THF. ^c CH₂Cl₂. ^d Resonanzen des η^2 -Teils, J(W-P) konnte wegen zu geringer Intensität nicht ermittelt werden. ^e Resonanz des η^1 -Teils.

einer meridional/facial-Isomerisierung verbunden sein muss. Solche Umlagerungsprozesse sind an oktaedrischen Komplexen mit wenigen Ausnahmen langsamer als es der NMR-Zeitskala entspricht [38].

3. Umsetzungen mit Nukleophilen

(a) Reaktionen mit Tributylphosphin. Die Entschwefelung von CS_2 -Komplexen mit tertiären Phosphinen ist ein gängiges Verfahren zur Einführung von CS_2 -Gruppen in Koordinationsverbindungen [4,39,40], es gibt jedoch auch einige Beispiele für ein Versagen dieser Methode [5]. Daher war es von Interesse, das Verhalten der hier beschriebenen Wolfram- CS_2 -Komplexe gegenüber einem basischen Phosphin zu überprüfen (Gl. 8). Dass diese Reaktion nicht glatt zu den erwarteten Thiocarbonylkomplexen 29–31 führt, ist schon am sofortigen Auftreten einer tiefblauen Färbung der Lösung zu erkennen. Diese kann auf die Bildung der Addukte 26–28 zurückgeführt werden, die unabhängig auch aus Solvenskomplex und separat präpariertem Phosphin- CS_2 -Addukt zu erhalten sind. Das Produktverhältnis ist deutlich abhängig von der Donorfähigkeit des Chelatliganden: Aus dem dppe-Komplex 1 erhält man das Addukt 26 in guten Ausbeuten, das bekannte Thiocarbonyl 29 [41] kann chromatographisch in geringer Menge abgetrennt werden.

 $R_2 P^{'} PR_2 = dppe: 26, 29, pp': 27, 30, dmpe: 28, 31$

Tabelle 3

Eine Klärung des Reaktionsverlaufs erfordert sicherlich umfangreiche kinetische Untersuchungen. Die auffallende Parallele zwischen der von 3 über 2 nach 1 zunehmenden Substitutionslabilität der CS₂-Komplexe und dem in der gleichen Richtung zunehmenden Anteil an Adduktkomplex im Reaktionsgemisch legt jedoch nahe, dass die Bildung der Addukte 26–28 über einen Angriff des Phosphins an den in geringer Menge im Gleichgewicht vorhandenen η^1 -Komplexen vom Typ C (Gl. 1) verläuft. (Eine Freisetzung des CS₂ kann ausgeschlossen werden; bei dem eingesetzten Überschuss an PBu₃ müssten dann auch in erheblichen Mengen die Substitutionsprodukte [W(CO)₃(R₂PC₂H₄PR₂)(PBu₃)] entstehen). Ergänzt werden muss noch, dass die Addukte 26–28 und die an anderer Stelle beschriebenen Pentacarbonylderivate [M(CO)₅(SC(S)PR₃)] (M = Cr, W) [22] weder thermisch noch photochemisch in die entsprechenden Thiocarbonylkomplexe überführt werden können.

Die Ligandeigenschaften der Zwitterionen $R_3PC(S)\overline{S}$ sind ausserordentlich vielfältig [5,22,29,42-50]. Am weitesten verbreitet ist die Funktion als Vier-Elektronen-Chelatligand [29,42-46], in Brückenkomplexen können sie vier [47], sechs [43,48,49] oder sogar acht [50] Elektronen zur Bindung beisteuern. Die in den Verbindungen **26-28** angetroffene Funktion als Zwei-Elektronen-Donor ist dagegen durch verhältnismässig wenige Beispiele vertreten [22,49]; sie tritt offenbar nur dann auf, wenn das Metallfragment wie hier nur über eine freie Koordinationsstelle und keine weiteren labilen Liganden verfügt.

Die Geometrie der Adduktkomplexe lässt sich aus den spektroskopischen Daten (Tab. 4) unmittelbar ableiten. Typisch für das einzähnig koordinierte Zwitterion ist ein tieffeldverschobenes Singulett im ³¹P-NMR-Spektrum und eine recht intensive C-S-Valenzschwingung bei ca. 1040 cm⁻¹. Die sehr niedrigen CO-Valenzschwin-

Verb.	IR (cm ⁻	¹)			³¹ P-NMR ^a			
	ν(CO)	<u> </u>		v(CS) b	$\delta(ppm)$	J(W-P) (Hz)	J(P-P) (Hz)	
26	1911s	1839s	1797s °	1039m	42.5 25.0	230		
27	1918s	1835s	1810s °	1042m				
29	2008w	1925vs ^d		1212s	36.4	234	6	
					34.9	172		
30	2007w	1916vs ^d		1210s	36.9 °	173	6	
					11.0 °	224		
					38.7 '	235	5	
					1.9 ′	165		
31	2000w	1906vs ^c		1203s	13.0	220	< 3	
					2.4	165		

Spektroskopische Daten der Bu₃P·CS₂- und CS-Komplexe

Tabelle 4

^a CDCl₃. ^b Nujol. ^c THF. ^d CH₂Cl₂. ^e Hauptisomer, CS trans zu PPh₂-Gruppe. ^f Nebenisomer, CS trans zu PMe₂-Gruppe, Isomerenverhältnis 7/3.

gungsfrequenzen weisen das Phosphin-CS₂-Addukt als starken Donor aus, was auf eine hohe Beteiligung der mesomeren Grenzstruktur mit weitgehender Übertragung

der negativen Ladung auf das Metall hindeutet. Die tiefblaue Farbe dieser Komplexe geht auf eine intensive Absorption (log $\epsilon = 4.0$) zurück, deren Lage sich mit zunehmender Polarität des Lösungsmittels hypsochrom verschiebt (CS₂ 615, THF 585, DMF 570 nm). Der zugehörige Übergang ist offenbar vom charge-transfer-Typ, wobei ein Elektron vom Metall auf ein π^* -Orbital des R₃P·CS₂-Liganden übertragen wird.

Ganz im gewohnten Rahmen finden sich die spektroskopischen Daten der Thiocarbonylkomplexe 29-31 (Tab. 4). Die hohen Werte für ν (CO) dokumentieren die bekannt grosse π -Akzeptorfähigkeit der CS-Gruppe [40], aus der sehr kleinen Kopplung ${}^{1}J({}^{183}W-{}^{31}P)$ lässt sich zudem auf einen sehr hohen *trans*-Einfluss des CS-Liganden schliessen [51].

(b) Hydrid-Addition. Der nukleophile Angriff am Kohlenstoff gelingt auch mit Hydrid-Übertragungsreagenzien wie BH_4^- oder $HBEt_3^-$ (Gl. 9). Neben dem

$$\mathbf{1} + \mathbf{H}^{-} \longrightarrow \begin{pmatrix} \mathbf{P}^{h_{2}} \\ \mathbf{P}^{-} \\ \mathbf{P}^{-} \\ \mathbf{P}^{-} \\ \mathbf{P}^{-} \\ \mathbf{W}^{-} \\ \mathbf{C}^{0} \\ \mathbf{C}^{0} \\ \mathbf{C}^{0} \\ \mathbf{V}^{-} \\ \mathbf{V}^{-} \\ \mathbf{V}^{-} \\ \mathbf{C}^{0} \\ \mathbf{V}^{-} \\ \mathbf{V}^{-$$

erwarteten Dithioformiato-Komplex 32 erhält man stets in geringen Mengen auch den ligandverbrückten Komplex 33, der sich aber aufgrund seiner geringen Löslichkeit leicht als Et_4N^+ -Salz abtrennen lässt. Bei längerem Stehenlassen in Lösung wandelt sich 32 langsam in 33 um, unterliegt also einer "Selbstmetallierung" ähnlich wie die Ausgangsverbindung 1 (Gl. 7). 32 ist unabhängig und in besseren Ausbeuten aus $Et_4N[HCS_2]$ und Solvenskomplex zugänglich [23], was neben den spektroskopischen Daten (Tab. 5) als Beleg für die in Gl. 9 gezeigte Konstitution herangezogen werden kann. Die gezielte Synthese von 33 gelingt am besten durch

33

Tabelle 5

CO-Valenzschwingungsfrequenzen der Dithioformiat-Komplexe

32

$\nu(CO)$ (cm ⁻¹)					
1910s	1815s	1790s ^{a,b}			
1915s	1905s	1825sh	1810sh	1792vs ^c	
2050m	1974w	1928s	1888m	1817s ^d	
2055m	1969m	1921s	1880m	1815s ^d	
	ν(CO) (cm ⁻¹) 1910s 1915s 2050m 2055m	ν(CO) (cm ⁻¹) 1910s 1815s 1915s 1905s 2050m 1974w 2055m 1969m	ν(CO) (cm ⁻¹) 1910s 1815s 1790s ^{<i>a,b</i>} 1915s 1905s 1825sh 2050m 1974w 1928s 2055m 1969m 1921s	ν(CO) (cm ⁻¹) 1910s 1815s 1790s ^{a,b} 1915s 1905s 1825sh 1810sh 2050m 1974w 1928s 1888m 2055m 1969m 1921s 1880m	ν(CO) (cm ⁻¹) 1910s 1815s 1790s ^{<i>a,b</i>} 1915s 1905s 1825sh 1810sh 1792vs ^{<i>c</i>} 2050m 1974w 1928s 1888m 1817s ^{<i>d</i>} 2055m 1969m 1921s 1880m 1815s ^{<i>d</i>}

^a CH₂Cl₂. ^b ¹H-NMR (CH₂Cl₂): HCS₂ 11.4(s). ^c Dimethylformamid. ^d THF.

Metallierung von 32 mit $[W(CO)_3(dppe)(Aceton)]$. Die Hydridaddition lässt sich auch an den unsymmetrischen Brückenkomplexen 21 und 22 durchführen (Gl. 10).

Der Aufbau der Produkte 34 und 35 geht aus den Analysendaten und vor allem aus den Infrarotspektren eindeutig hervor; letztere lassen die charakteristischen Schwingungen von $W(CO)_3$ - und $M(CO)_5$ -Teil unschwer erkennen, wie sie auch in den einkernigen Anionen 32 bzw. $[M(CO)_5(SCHS)]^-$ [52,53] gefunden werden.

Einen gänzlich anderen Verlauf nimmt die Reaktion des methylierten CS_2 -Komplexes 6 mit Hydridreagenzien in unpolaren Lösungsmitteln (Gl. 11). Man

$$\begin{array}{c|c} Ph_2 & O \\ C \\ P \\ P \\ Ph_2 & W \\ Ph_2 & C \\ P \\ Ph_2 & S \\ C \\ S \\ Me \end{array} \qquad 6 + H^- \longrightarrow 29 + MeSH \qquad (11)$$

erhält nicht, wie in Analogie zu Gl. 10 erwartet, einen Dithioameisensäureester-Komplex, vielmehr bildet sich unter Abspaltung von Methylmercaptan das Thiocarbonylderivat **29**. (In polaren Lösungsmitteln wie THF oder HMPA entsteht ein kompliziertes Produktgemisch, dessen Zusammensetzung wir noch nicht klären konnten. Der Thioesterkomplex, der durch Methylierung von **32** unschwer zugänglich ist [23], wird jedoch auch dabei nicht gebildet.) Dieser Weg zur Entschwefelung von CS_2 -Komplexen wurde erstmals von Roper et al. bei Ru-, Os- und Ir-Komplexen gefunden [54]. Die Autoren konnten zeigen, dass zunächst ein Hydridligand am Metall unter Öffnung der Metall-Schwefel-Bindung addiert wird, gefolgt von einer 1,2-Eliminierung des Mercaptans. Es gibt aber auch Beispiele für eine Addition des Hydrids direkt am Kohlenstoff [15,55]. Die Frage, wann Hydridreagenzien am Metall oder am Kohlenstoff angreifen, ist sicherlich weitere Untersuchungen wert.

(c) Reaktion mit Organolithiumverbindungen. Freies Kohlenstoffdisulfid reagiert mit Grignard- und Organolithiumverbindungen in Gegenwart von Cu⁺ zu Salzen von Dithiocarbonsäuren [56]. Dementsprechend und in Analogie zu Reaktion 9 hatten wir erwartet, dass 1 sich mit Methyl- oder Butyllithium zu Dithiocarboxylatokomplexen umsetzen würde. Unerwarteterweise entsteht aber auch bei dieser Reaktion als einzige Komplexverbindung das Thiocarbonylderivat **29** (Gl. 12). Das

$$\begin{array}{c|c} S \\ Ph_{2} \\ P \\ \hline \\ P \\ P \\ Ph_{2} \\$$

freigesetzte Mercaptid ist nach hydrolytischer Aufarbeitung an seinem charakteristischen Geruch deutlich zu erkennen, **29** ist also eindeutig das Produkt eines nukleophilen Angriffs am Schwefel. Organische Thiocarbonylverbindungen (Thioketone, Thioester) reagieren mit Organolithium- und Magnesiumreagenzien normalerweise unter thiophiler Addition [57,58], auf die mögliche Beteiligung radikalischer Zwischenstufen hierbei wurde wiederholt hingewiesen [58,59]. Der thiophile Angriff am freien CS₂ gelingt dagegen nur mit dem sterisch äusserst überladenen 2,4,6-Tritertiärbutylphenyl-Lithium [60*]. Reaktion 12 stellt somit ein Beispiel dar für die Umpolung von CS₂ durch Koordination an ein Übergangsmetall. Eine Beteiligung von Elektronenübertragungsprozessen an Reaktion 12 lässt sich nicht völlig ausschliessen [61]. Der folgende Mechanismus bietet jedoch eine einfache Erklärung für die glatt ablaufende Schwefel-Abstraktion (Gl. 13). Im ersten Schritt greift das

 $[W] = W(CO)_3 dppe$

Carbanion nukleophil am endocyclischen Schwefel an, wie dies auch für die Entschwefelung mit tertiären Phosphinen diskutiert wird [4,40]. Dabei entsteht ein Metallodithiocarbonsäureester, der anschliessend in Thiocarbonylkomplex und Thiolat zerfällt. Der letzte Schritt ist die Umkehrung der von Angelici gefundenen Addition von Thiolaten an Thiocarbonylkomplexe [62,63]. Diese gelingt nur an verhältnismässig elektronenarmen Verbindungen, z. B. [W(CO)₅(CS)] und *cis*-[W(CO)₄(L)(CS)], deren CS-Valenzschwingungsfrequenz grösser als etwa 1247 cm⁻¹ ist [63]. Für das elektronenreiche Derivat **29** (ν (CS) 1212 cm⁻¹) muss daher das Gleichgewicht völlig auf der rechten Seite liegen. Die hier vorgestellte Reaktion bietet somit eine weitere günstige Alternative zur Synthese von Thiocarbonylkomplexen.

Experimenteller Teil

Alle Reaktionen wurden in gereinigten Lösungsmitteln unter Inertgas durchgeführt. NMR-Spektren: ¹H: Varian T 60, ¹³C: Bruker WM 400, ³¹P: Bruker WH 90, IR-Spektren: Perkin-Elmer 283. Die Chelatphosphine dppe [64], pp' [65], dmpe [66], dppb [67] und dmpb [68] wurden nach bekannten Verfahren erhalten. Die Synthesen der CS₂-Komplexe 1, 3 und 4, der Methylderivate 6 und 8 und der Zweikernkomplexe 23 und 24 sind bereits an anderer Stelle beschrieben [22,24].

1. Tetracarbonyl-1,2-bis(dimethylphosphino)benzol-wolfram

2.33 g Tetracarbonyl(dipiperidin)wolfram [69] (5.0 mmol) und 1.05 ml dmpb (5.0 mmol) werden in 70 ml Dichlormethan 2 h unter Rückfluss erhitzt. Danach wird auf 10 ml eingeengt und das Produkt mit 20 ml Hexan gefällt. Man filtriert ab, wäscht mit wenig Hexan und trocknet im Vakuum. Ausbeute: 1.85 g (75%), gelbes Kristallpulver, Schmp. 167 °C. IR (Hexan): ν (CO) 2017m, 1924m, 1902vs cm⁻¹. ³¹P-NMR (CDCl₃): 6.4 ppm, ¹J(¹⁸³W-³¹P) 223 Hz. (Gef.: C, 34.83; H, 3.14. C₁₄H₁₆O₄P₂W ber.: C, 34.03; H, 3.26%).

2. Tricarbonyl-kohlenstoffdisulfid-1-dimethylphosphino-2-diphenylphosphinoethanwolfram (2)

1.14 g [W(CO)₄ pp'] (2.0 mmol) [70] werden in 200 ml Aceton bis zur vollständigen Abspaltung von einem Äquivalent CO bestrahlt (125 W-Hg-Hochdruckbrenner, IR-Kontrolle). Man engt anschliessend bei 0°C auf 20 ml ein und versetzt mit 10 ml CS₂. Nach 30 min wird das Produkt mit Hexan gefällt, abfiltriert, mit Hexan gewaschen und im Vakuum getrocknet. Ausbeute: 0.98 g (79%), orangefarbener Feststoff, Zers. P. 60°C. (Gef.: C, 38.63; H, 3.33; S, 9.50. $C_{20}H_{20}O_3P_2S_2W$ ber.: C, 38.85; H, 3.26; S, 10.37%).

3. Tricarbonyl-kohlenstoffdisulfid-1,2-bis(dimethylphosphino)benzol-wolfram (5)

0.74 g [W(CO)₄dmpb] (1.5 mmol) werden in 200 ml Ethanol wie unter 2. beschrieben bestrahlt. Man gibt anschliessend 20 ml CS₂ zu und rührt 1 h. Danach wird im Vakuum zur Trockne gebracht und der Rückstand in 40 ml CS₂ aufgenommen. Man filtriert ab, engt das Filtrat auf 20 ml ein und kühlt auf -20 °C. Dabei kristallisiert das Produkt im Verlauf mehrerer Tage in langen rotbraunen Nadeln. Ausbeute: 0.48 g (59%), Zers.P. 82 °C. (Gef.: C, 29.82; H, 2.82; S, 12.64. C₁₄H₁₆O₃P₂S₂W ber.: C, 31.01; H, 2.97; S, 11.83%).

4. Tricarbonyl[(methylthio)thioxomethyl]-1-dimethylphosphino-2-diphenylphosphinoethan-wolfram (7)

0.62 g 2 (1.0 mmol) werden in einem Gemisch aus 5 ml Ethanol, 1 ml CS₂ und 0.25 ml Methyliodid (4.0 mmol) 4 h gerührt. Die tiefrote Lösung wird filtriert und auf -70 °C gekühlt. Der ausgefallene Niederschlag wird abfiltriert, mit Hexan gewaschen und im Vakuum getrocknet. Ausbeute: 0.26 g (34%), tiefrotes Kristallpulver, Zers.P. 80 °C. (Gef.: C, 33.40; H, 3.26; S, 8.08. C₂₁H₂₃IO₃P₂S₂W ber.: C, 33.18; H, 3.05; S, 8.43%).

5. mer-Tricarbonyl(η^2 -1,3-dithiolan-2-thion)-1,2-bis(dimethylphosphino)ethan-wolfram (10)

(A) Aus CS_2 -Komplex und Thiiran. 0.50 g 3 (1.0 mmol) werden in 10 ml Dichlormethan gelöst, mit 0.3 ml Thiiran (5.0 mmol) und 10 mg Bu_4NBr (0.03 mmol) versetzt und bei 0°C stehen gelassen. Nach 24 h wird über eine kurze Kieselgelsäule mit Dichlormethan als Laufmittel chromatographiert, die erste tiefgelbe Zone enthält das Produkt, das beim Eindampfen als orangefarbenes Pulver anfällt. Ausbeute: 0.10 g (18%).

(B) Aus Ethanolkomplex und 1,3-Dithiolan-2-thion. 0.45 g [W(CO)₄dmpe] (1.0 mmol) werden in 200 ml Ethanol wie unter 2. beschrieben bestrahlt. Anschliessend wird bei 0° C im Vakuum zur Trockne gebracht und der orangefarbene Rückstand sofort mit einer Lösung von 0.20 g 1,3-Dithiolan-2-thion (1.5 mmol) [71] in 10 ml Dichlormethan versetzt. Die Lösung färbt sich sofort tiefviolett, im Infrarotspektrum erkennt man die Bildung des *fac*-Isomers 15. Nach einigen Stunden ist die Isomerisierung zu 10 abgeschlossen (IR-Kontrolle), die Aufarbeitung erfolgt wie unter (A) beschrieben. Ausbeute: 0.24 g (43%), orangefarbenes Kristallpulver, Zers.P. 125° C. (Gef.: C, 25.71; H, 3.40; S, 16.52. C₁₂H₂₀O₃P₂S₃W ber: C, 26.00; H, 3.64; S, 17.35%).

6. mer-Tricarbonyl(η^2 -4-methyl-1,3-dithiolan-2-thion)-1,2-bis(dimethylphosphino)ethanwolfram (13)

Die Synthese erfolgt aus 3 und 2-Methylthiiran wie unter 5(A) beschrieben. Ausbeute: 0.10 g (18%), orangefarbene Nadeln, Schmp. 115°C. (Gef.: C, 25.80; H, 3.47; S, 16.18. $C_{13}H_{22}O_3P_2S_3W$ ber.: C, 27.48; H, 3.90; S, 16.92%). Bei der chromatographischen Aufarbeitung fällt eine geringe Menge einer violetten Fraktion an, bei der es sich laut IR-Spektrum um das *fac*-Isomer 18 handelt.

7. fac-Tricarbonyl(η^{1} -1,3-dithiolan-2-thion)-1,2-bis(diphenylphosphino)ethan-wolfram (14)

(A) Aus CS_2 -Komplex und Thiiran. 0.71 g 1 (1.0 mmol) werden in 10 ml Dichlormethan und 1 ml CS_2 aufgenommen und bei 0°C mit 0.3 ml Thiiran (5.0 mmol) und 10 mg Bu₄NBr (0.03 mmol) versetzt. Die Lösung färbt sich langsam violett, IR-spektroskopisch ist die intermediäre Bildung des *mer*-Isomers 9 erkennbar. Nach 24 h wird über eine kurze Kieselgelsäule mit Dichlormethan als Laufmittel chromatographiert, die erste, violette Zone wird aufgefangen, auf 5 ml eingeengt und 10 ml Hexan zugegeben. Das Produkt fällt dabei als Solvat mit 1 mol CH_2Cl_2 an. Ausbeute: 0.31 g (35%).

(B) Aus Acetonkomplex und 1,3-dithiolan-2-thion. 0.70 g [W(CO)₄dppe] (1.0 mmol) werden in 200 ml Aceton wie unter 2. beschrieben bestrahlt. Anschliessend wird im Vakuum auf 5 ml eingeengt und die Lösung mit 0.20 g 1,3-Dithiolan-2-thion (1.5 mmol) [71] versetzt. Die Aufarbeitung erfolgt wie unter (A) beschrieben. Ausbeute: 0.30 g (34%), violettes Kristallpulver, Schmp. 122°C (Gef.: C, 45.09; H, 3.75; S, 10.58; Cl, 8.64. $C_{32}H_{28}O_3P_2S_3W \cdot CH_2Cl_2$ ber.: C, 44.66; H, 3.41; S, 10.84; Cl, 7.99%).

8. fac-Tricarbonyl(η^{1} -1,3-dithiolan-2-thion)-1,2-bis(diphenylphosphino)benzol-wolfram (16)

(A) Aus CS_2 -Komplex und Thiiran. 0.79 g 4 (1.0 mmol) werden wie unter 7(A) beschrieben mit Thiiran umgesetzt. Auch hier entsteht zunächst das mer-Isomer 11, das sich im Laufe der Reaktionszeit in 16 umwandelt. Ausbeute: 0.24 g (28%).

(B) Aus Acetonkomplex und 1,3-Dithiolan-2-thion. 0.74 g [W(CO)₄dppb] (1.0 mmol) werden wie unter 7(B) beschrieben photolysiert und mit 1,3-Dithiolan-2-thion umgesetzt. Ausbeute: 0.21 g (25%), violettes Kristallpulver, Schmp. 108°C. (Gef.: C, 49.81; H, 3.15; S, 9.29. $C_{36}H_{28}O_3P_2S_3W$ ber.: C, 50.83; H, 3.32; S, 11.31%).

9. fac-Tricarbonyl(η^{1} -4-methyl-1,3-dithiolan-2-thion)-1,2-bis(diphenylphosphino)ethanwolfram (17)

0.71 g 1 (1.0 mmol) werden wie unter 7(A) beschrieben mit 2-Methylthiiran umgesetzt. Es bildet sich zunächst das *mer*-Isomer 12, das sich im Laufe der Reaktion zu 17 umlagert. Ausbeute: 0.06 g (7%), violettes Pulver. (Gef.: C, 48.44; H, 4.04; S, 10.42. $C_{33}H_{30}O_3P_2S_3W$ ber.: C, 48.54; H, 3.70; S, 11.78%).

10. mer-Tricarbonyl(η^2 -1,3-dithiolan-2-thion-1-oxid)-1,2-bis(diphenylphosphino)ethanwolfram (19)

0.36 g 1 (0.5 mmol) und 0.04 ml Thiiran-1-oxid (0.6 mmol) [72] werden bei 0 °C in 3 ml Dichlormethan gelöst. Nach 2 h wird das Lösungsmittel im Vakuum entfernt und der Rückstand aus Toluol/Hexan umkristallisiert. Ausbeute: 0.15 g (37%), orangefarbenes Kristallpulver. (Gef.: C, 47.05; H, 3.30; S, 9.87. $C_{32}H_{28}O_4P_2S_3W$ ber.: C, 46.96; H, 3.45; S, 11.75%).

11. mer-Tricarbonyl(η^2 -1,3-dithiolan-2-thion-1-oxid)-1,2-bis(dimethylphosphino)ethanwolfram (**20**)

0.25 g 3 (0.5 mmol) werden wie unter 10. mit Thiiran-1-oxid umgesetzt. Ausbeute: 0.11 g (39%), orangefarbenes Kristallpulver, Schmp. 138°C (Gef.: C, 24.83; H, 3.44; S, 15.60. $C_{12}H_{20}O_4P_2S_3W$ ber.: C, 25.27, H, 3.54; S, 16.87%).

Octacarbonyl-μ-kohlenstoffdisulfid-1,2-bis(diphenylphosphino)ethan-chrom-wolfram (21)

0.71 g 1 (1.0 mmol), 0.36 g Et₄N[Cr(CO)₅Cl] (1.0 mmol) [73] und 0.34 g NaBPh₄ (1.0 mmol) werden bei 0 °C in einem Gemisch aus 50 ml Dichlormethan und 0.5 ml CS₂ gerührt. Nach 1 h wird das Lösungsmittel im Vakuum entfernt und der Rückstand mit 20 ml Toluol extrahiert. Aus dem Extrakt fällt das Produkt bei Zugabe von 50 ml Hexan und Kühlen auf -20 °C aus. Man filtriert ab, wäscht mit Hexan und trocknet im Vakuum. Ausbeute: 0.50 g (54%), orangefarbene Kristalle. Zers. P. 132 °C. (Gef.: C, 44.86; H, 2.58; S, 6.90. C₃₅H₂₄CrO₈P₂S₂W ber.: C, 44.99; H, 2.59; S, 6.86%).

 Octacarbonyl-μ-kohlenstoffdisulfid-1,2-bis(diphenylphosphino)ethan-diwolfram (22) Die Synthese erfolgt aus 1 und Et₄N[W(CO)₅Cl] [73] wie unter 12. beschrieben.
Ausbeute: 0.47 g (44%), rote Kristalle, Zers.P. 135°C. (Gef.: C, 40.71; H, 2.55; S, 5.90. C₃₅H₂₄O₈P₂S₂W₂ ber.: C, 39.42; H, 2.27; S, 6.01%).

14. Hexacarbonyl-μ-kohlenstoffdisulfid-bis(1-dimethylphosphino-2-diphenylphosphinoethan)-diwolfram (25)

0.62 g 2 (1.0 mmol) werden bei 20°C in 10 ml Dichlormethan gelöst. Nach 1 h ist die Umsetzung zu 25 abgeschlossen (IR-Kontrolle). Beim Entfernen des Lösungsmittels hinterbleibt ein rotes Öl, das auch nach chromatographischer Reinigung (Kieselgel/Dichlormethan) nicht zur Kristallisation zu bringen ist.

15. Tricarbonyl-(tributylphosphoniodithioformiato)-1,2-bis(diphenylphosphino)ethanwolfram (26)

(A) Aus CS_2 -Komplex und Tributylphosphin. 0.15 g 1 (0.2 mmol) werden in 10 ml Dichlormethan gelöst und mit 0.20 g Tributylphosphin (1.0 mmol) versetzt, dabei verfärbt sich die Lösung sofort tiefblau. Nach 1 h wird über eine kurze Kieselgelsäule chromatographiert. Man eluiert zunächst mit Dichlormethan eine gelbe Zone, die nach ihrem IR-Spektrum eine geringe Menge des Thiocarbonylkomplexes **29** [41] enthält. Mit Aceton wird anschliessend eine breite tiefblaue Zone herausgewaschen, beim Eindampfen der Lösung hinterbleibt eine blauschwarze Kristallmasse. Ausbeute: 0.10 g (55%).

(B) Aus Acetonkomplex und $Bu_3P \cdot CS_2$. 1.39 g [W(CO)₄dppe] (2.0 mmol) werden wie unter 2. beschrieben photolysiert. Nach Zugabe von 0.56 g $Bu_3P \cdot CS_2$ (2.0 mmol) färbt sich die Lösung sofort tiefblau. Man entfernt das Lösungsmittel im Vakuum und kristallisiert den Rückstand aus Dichlormethan/Hexan um. Ausbeute: 1.25 g (66%), tiefblaue Kristallnadeln, Zers.P. 131°C. (Gef.: C, 53.40; H, 5.49; S, 6.43. C₄₂H₅₁O₃P₃S₂W ber.: C, 53.40; H, 5.44; S, 6.79%).

16. Tricarbonyl-(tributylphosphoniodithioformiato)-1-dimethylphosphino-2-diphenylphosphinoethan-wolfram (27)

Die Synthese erfolgt aus $[W(CO)_4 pp']$ [70] und Bu₃P·CS₂ wie unter 15 (B) beschrieben. Ausbeute: 0.66 g (40%), tiefblaue Kristalle, Schmp. 126°C (Zers.). (Gef.: C, 47.04; H, 5.72; S, 7.65. C₃₉H₄₇O₃P₃S₂W ber.: C, 46.84; H, 5.77; S, 7.81%).

17. Tricarbonyl-thiocarbonyl-1,2-bis(diphenylphosphino)ethan-wolfram (29)

(A) Aus methyliertem CS_2 -Komplex und Hydridreagenz. 4 ml einer 0.5 M Lösung von K[HB(s-Bu)₃] in THF (K-Selectrid[®]) werden im Vakuum zur Trockne gebracht. Der Rückstand wird mit 10 ml Toluol und 0.85 g 6 (1.0 mmol) versetzt und 30 min bei 20°C gerührt. Man setzt 1 ml Ethanol zu, um überschüssiges Hydridreagenz zu zerstören, zieht zur Trockne ab, löst den Rückstand in Dichlormethan und chromatographiert über Kieselgel mit dem gleichen Solvens. Die erste gelbe Zone wird aufgefangen, eingeengt und das Produkt mit Ethanol gefällt. Ausbeute: 0.41 g (61%).

(B) Aus CS_2 -Komplex und Methyllithium. 0.29 g 1 (0.4 mmol) werden bei 0°C in 10 ml Toluol aufgenommen und mit 2 ml 1 *M* LiMe in Diethylether versetzt. Nach 2 h gibt man vorsichtig einige Tropfen Ethanol zu, entfernt die Lösungsmittel im Vakuum und arbeitet chromatographisch wie unter (A) beschrieben auf. Ausbeute: 0.20 g (73%), gelbe Kristallnadeln. Die Reaktion kann auch mit Butyllithium ausgeführt werden, die Ausbeute beträgt dann 55%. Das Produkt ist identisch mit literaturbekanntem **29** [41].

18. Tricarbonyl-thiocarbonyl-1-dimethylphosphino-2-diphenylphosphinoethan-wolfram (30)

0.62 g 2 (1.0 mmol) werden in 10 ml Dichlormethan gelöst und mit 1.00 g Tributylphosphin (5.0 mmol) versetzt, dabei verfärbt sich die Lösung sofort tiefblau. Ein nach 30 min aufgenommenes IR-Spektrum zeigt, dass sich 30 und 27 etwa im Verhältnis 2/1 gebildet haben. Aus diesem Gemisch kann 30 chromatographisch wie unter 17(A) beschrieben abgetrennt werden, 27 zersetzt sich dabei auf der Säule. Ausbeute: 0.35 g (60%), gelbe Kristalle, Zers.P. 177 °C. (Gef.: C, 40.89; H, 3.43; S, 5.51. $C_{20}H_{20}O_3P_2SW$ ber.: C, 40.98; H, 3.44; S, 5.47%).

19. Tricarbonyl-thiocarbonyl-1,2-bis(dimethylphosphino)ethan-wolfram (31)

Die Synthese erfolgt durch Entschwefelung von 3 wie unter 18. beschrieben. Ausbeute: 0.28 g (60%), gelbes Kristallpulver, Schmp. 155°C (Zers.). (Gef.: C, 26.00; H, 3.71; S, 7.03. $C_{10}H_{16}O_3P_2SW$ ber.: C, 25.99; H, 3.49; S, 6.94%).

20. Tetraethylammonium-tricarbonyl-dithioformiato-1,2-bis(diphenylphosphino)ethanwolframat (32)

0.25 g 1 (0.35 mmol) werden bei 0 °C in 30 ml THF gelöst und mit 1 ml einer 0.5 *M* Lösung von Li[HBEt₃] in THF versetzt. Nach 30 min gibt man eine Lösung von 0.25 g Et₄NBr (1.2 mmol) in 10 ml Dichlormethan zu und entfernt die Lösungsmittel im Vakuum. Der Rückstand wird aus Dichlormethan/Ethanol umkristallisiert. Ausbeute: 0.14 g (46%), orangefarbenes Pulver, Zers.P. 170 °C. (Gef.: C, 52.39; H, 5.22; N, 1.57. $C_{38}H_{45}NO_3P_2S_2W$ ber.: C, 52.24; H, 5.19; N, 1.60%). 21. Tetraethylammonium-hexacarbonyl-μ-dithioformiato-bis[1,2-bis(diphenylphosphino)ethan]-diwolframat (33)

0.35 g [W(CO)₄dppe] (0.5 mmol) werden wie unter 2. beschrieben photolysiert. Nach Zugabe von 0.44 g **32** (0.5 mmol) färbt sich die Lösung weinrot. Man entfernt das Lösungsmittel im Vakuum und kristallisiert den Rückstand aus Acetonitril um, dabei fällt **33** als Solvat mit 1 mol Acetonitril an. Ausbeute: 0.62 g (78%), violettes Kristallpulver. (Gef.: C, 52.15; H, 4.36; N, 1.64. $C_{67}H_{69}NO_6P_4S_2W_2 \cdot CH_3CN$ ber.: C, 52.42; H, 4.59; N, 1.77%).

22. Tetraethylammonium-octacarbonyl-µ-dithioformiato-1,2-bis(diphenylphosphino)ethan-chromatowolframat (34)

0.093 g 21 (0.10 mmol) werden in 3 ml THF gelöst und mit 0.5 ml 1 MLi[HBEt₃] in THF versetzt, dabei verfärbt sich die Lösung nach rot. Man gibt 0.05 g Et₄NCl (0.30 mmol) hinzu und entfernt das Lösungsmittel im Vakuum. Aus dem Rückstand werden zunächst die Nebenprodukte mit 2 ml Ethanol extrahiert, der zurückbleibende Festkörper wird aus Dichlormethan/Hexan umkristallisiert. Ausbeute: 0.050 g (47%), rotes Kristallpulver, Zers.P. 100 °C. (Gef.: C, 48.78; H, 4.28; N, 1.22. C₄₃H₄₅CrNO₈P₂S₂W ber.: C, 48.46; H, 4.26; N, 1.31%).

23. Tetraethylammonium-octacarbonyl-µ-dithioformiato-1,2-bis-(diphenylphosphino)ethan-diwolframat (35)

Die Synthese erfolgt aus 22 wie unter 22. beschrieben. Ausbeute: 0.050 g (42%), rotes Kristallpulver, Zers.P. 116°C. (Gef.: C, 44.26; H, 4.32; N, 1.10. $C_{43}H_{45}NO_8$ - $P_2S_2W_2$ ber.: C, 43.13; H, 3.79; N, 1.17%).

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Literatur

- 1 W.A. Schenk, D. Rüb und Ch. Burschka, J. Organomet. Chem., 328 (1987) 305.
- 2 M.C. Baird und G. Wilkinson, Chem. Commun., (1966) 514.
- 3 I.S. Butler und E.A. Fenster, J. Organomet. Chem., 66 (1974) 161.
- 4 P.V. Yaneff, Coord. Chem. Rev. 23 (1977) 183.
- 5 H. Werner, Coord. Chem. Rev., 43 (1982) 165.
- 6 J.A. Ibers, Chem. Soc. Rev., 11 (1982) 57.
- 7 C. Bianchini, C. Mealli, A. Meli, M. Sabat, in I. Bernal (Hrsg.), Stereochemistry of Organometallic and Inorganic Compounds, Vol. 1, Elsevier, Amsterdam, 1986.
- 8 H.A. Harris, A.D. Rae und L.F. Dahl, J. Am. Chem. Soc., 109 (1987) 4739.
- 9 H.G. Alt, K.H. Schwind und M.D. Rausch, J. Organomet. Chem., 321 (1987) C9.
- 10 G. Fachinetti, C. Floriani, A. Chiesi-Villa und C. Guastini, J. Chem. Soc., Dalton Trans., (1979) 1612.
- 11 C. Moise, J. Organomet. Chem., 247 (1983) 27.
- 12 K. Ihmels und D. Rehder, Chem. Ber., 118 (1985) 895.
- 13 G.W.A. Fowles, L.S. Pu und D.A. Rice, J. Organomet. Chem., 54 (1973) C17; M.G.B. Drew und L.S. Pu, Acta Cryst. B, 33 (1977) 1207.
- 14 R. Mercier, J. Douglade, J. Amaudrut, J. Sala-Pala und J. Guerchais, Acta Cryst., B 36 (1980) 2986; J. Amaudrut, J. Sala-Pala, J.E. Guerchais, R. Mercier und J. Douglade, J. Organomet. Chem., 235 (1982) 301.
- 15 J. Amaudrut, A. Kadmiri, J. Sala-Pala und J.E. Guerchais, J. Organomet. Chem., 266 (1984) 53.

- 16 M. Herberhold und M. Süss-Fink, Chem. Ber., 111 (1978) 2273.
- 17 H. Brunner, W. Meier und J. Wachter, J. Organomet. Chem., 210 (1981) C23.
- 18 M. Herberhold, M. Süss-Fink und C.G. Kreiter, Angew. Chem., 89 (1977) 191; Angew. Chem., Int. Ed. Engl., 16 (1977) 193; M. Herberhold und M. Süss-Fink, Angew. Chem., 89 (1977) 192; Angew. Chem., Int. Ed. Engl., 16 (1977) 194.
- 19 T.W. Turney, Inorg. Chim. Acta, 64 (1982) L141.
- 20 D.S. Barratt und C.A. Mc Auliffe, Inorg. Chim. Acta, 97 (1985) 37.
- 21 Auch ein zweikerniger, CS₂-verbrückter Komplex des Urans wurde kürzlich isoliert und strukturell charakterisiert: J.G. Brennan, R.A. Anderson und A. Zalkin, Inorg. Chem., 25 (1986) 1756.
- 22 W.A. Schenk, T. Schwietzke und H. Müller, J. Organomet. Chem., 232 (1982) C41.
- 23 W.A. Schenk und T. Schwietzke, Organometallics, 2 (1983) 1905.
- 24 W.A. Schenk und D. Kuemmerle, J. Organomet. Chem., 303 (1986) C25.
- 25 W.A. Schenk und H. Müller, Chem. Ber., 115 (1982) 3618.
- 26 W.A. Schenk und F.-E. Baumann, J. Organomet. Chem., 256 (1983) 261; idem, ibid., 260 (1984) C6.
- 27 W.A. Schenk, D. Rüb und Ch. Burschka, J. Organomet. Chem., 328 (1987) 287.
- 28 D.J. Darensbourg, Adv. Organomet. Chem., 21 (1982) 113; J.A.S. Howell und P.M. Burkinshaw, Chem. Rev., 83 (1983) 557; D.J. Darensbourg, D.J. Zalewski, C. Plepys und C. Campana, Inorg. Chem., 26 (1987) 3727.
- 29 H. Werner und W. Bertleff, Chem. Ber., 113 (1980) 267, und dort zitierte Literatur.
- 30 C. Mealli, R. Hoffmann und A. Stockis, Inorg. Chem., 23 (1984) 56.
- 31 U. Zoller in A. Hassner (Hrsg.), Small Ring Heterocycles, John Wiley, New York, 1983, S. 333.
- 32 Zugesetzte Br⁻-Ionen beschleunigen die Reaktion, offenbar ist das dann gebildete BrC₂H₄S⁻ gegenüber den CS₂-Komplexen etwas reaktiver als der intakte Dreiring. Siehe hierzu auch: M.M. Singh und R.J. Angelici, Inorg. Chem., 23 (1984) 2691.
- 33 W.A. Schenk, J. Leissner und Ch. Burschka, Angew. Chem., 96 (1984) 787; Angew. Chem., Int. Ed. Engl., 23 (1984) 806; idem, Z. Naturforsch. B, 40 (1985) 1264.
- 34 W.A. Schenk und S. Müssig, J. Organomet. Chem., 320 (1987) C23.
- 35 W.A. Schenk, Angew. Chem. 99 (1987) 101; Angew. Chem., Int. Ed. Engl., 26 (1987) 98.
- 36 Das hierzu isomere Sulfin, 1,3-Dithiolan-2-thion-2-oxid wurde strukturanalytisch charakterisiert: R.B. Bates und G.A. Wolfe, J. Am. Chem. Soc., 90 (1968) 6854.
- 37 Eine Stabilisierung der meridionalen Isomeren mit zunehmender π -Akzeptorfähigkeit des ungesättigten Liganden haben wir auch bei Olefinkomplexen gefunden und dort ausführlich kommentiert [25].
- 38 D.J. Darensbourg, R. Kudaroski und W.A. Schenk, Inorg. Chem., 21 (1982) 2488, und dort zitierte Literatur.
- 39 I.S. Butler, Acc. Chem. Res., 10 (1977) 359.
- 40 P.V. Broadhurst, Polyhedron, 4 (1985) 1801.
- 41 B.D. Dombeck und R.J. Angelici, Inorg. Chem., 15 (1976) 1089.
- 42 S.M. Boniface und G.R. Clark, J. Organomet. Chem., 188 (1980) 263.
- 43 W. Bertleff und H. Werner, Z. Naturforsch. B, 37 (1982) 1294.
- 44 P.K. Baker, K. Broadley und N.G. Connelly, J. Chem. Soc., Dalton Trans., (1982) 471.
- 45 C. Bianchini, A. Meli, A. Orlandini und G. Scapacci, J. Organomet. Chem., 215 (1981) C59; C. Bianchini, A. Meli und A. Orlandini, Inorg. Chem., 21 (1982) 4161; C. Bianchini, G.A. Ghilardi, A. Meli und A. Orlandini, ibid., 22 (1983) 2188.
- 46 T.R. Gaffney und J.A. Ibers, Inorg. Chem., 21 (1982) 2062.
- 47 C. Bianchini, C.A. Ghilardi, A. Meli, A. Orlandini und G. Scapacci, J. Chem. Soc., Dalton Trans., (1983) 1969.
- 48 C. Bianchini, C.A. Ghilardi, A. Meli, S. Midollini und A. Orlandini, J. Organomet. Chem., 219 (1981) C13.
- 49 C. Bianchini, C.A. Ghilardi, A. Meli, S. Midollini und A. Orlandini, Organometallics, 1 (1982) 778; C. Bianchini, A. Meli, P. Dapporto, A. Tofanari und P. Zanello, Inorg. Chem., 26 (1987) 3677.
- 50 D. Miguel, V. Riera, J.A. Miguel, X. Solans und M. Font-Altaba, J. Chem. Soc., Chem. Commun., (1987) 472.
- 51 T.G. Appleton, H.C. Clark und L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335; P.S. Pregosin und R.W. Kunz, ³¹P and ¹³C-NMR of Transition Metal Phosphine Complexes, Springer, Berlin, 1979.
- 52 D.J. Darensbourg, A. Rokicki und M.Y. Darensbourg, J. Am. Chem. Soc., 103 (1981) 3223.
- 53 W. Buchner und W.A. Schenk, Inorg. Chem., 23 (1984) 132.
- 54 K.R. Grundy, R.O. Harris und W.R. Roper, J. Organomet. Chem., 90 (1975) C34; T.J. Collins, W.R. Roper und K.G. Town, J. Organomet. Chem., 121 (1976) C41; P.J. Brothers, C.E.L. Headford und

W.R. Roper, J. Organomet. Chem., 195 (1980) C29; M. Herberhold, A.F. Hill, N. McAuley und W.R. Roper, J. Organomet. Chem., 310 (1986) 95.

- 55 D. Touchard, P.H. Dixneuf, R.D. Adams und B.E. Segmüller, Organometallics, 3 (1984) 640; D. Touchard, J.L. Fillaut, P.H. Dixneuf, C. Mealli, M. Sabat und L. Toupet, ibid., 4 (1985) 1684.
- 56 S. Scheithauer und R. Mayer, Thio- and Dithiocarboxylic Acids and Their Derivatives, Thieme Verlag, Stuttgart, 1979.
- 57 A. Thuillier, Phosphorus Sulfur, 23 (1985) 253.
- 58 F. Duus in D.N. Jones (Hrsg.), Comprehensive Organic Chemistry, Bd. 3, Pergamon, Oxford, 1979, S. 373.
- 59 M. Dagonneau, Bull. Soc. Chim. France, II (1982) 269.
- 60 R. Okazaki, T. Fujii und N. Inamoto, J. Chem. Soc., Chem. Commun., (1984) 1010. Eine erst nach Abschluss der hier beschriebenen Untersuchungen erschienene Arbeit beschreibt die Reaktion von CS₂ mit Aryllithium-Verbindungen, wobei das entsprechende Thiophenol und "viel Teer" entsteht: H.D. Verkruijsse und L. Brandsma, J. Organomet. Chem., 332 (1987) 95.
- 61 Siehe hierzu Lit. [55] und: D. Touchard, C. Lelay, J.L. Fillaut und P.H. Dixneuf, J. Chem. Soc., Chem. Commun., (1986) 37.
- 62 R.A. Pickering, R.A. Jacobsen und R.J. Angelici, J. Am. Chem. Soc., 103 (1981) 817.
- 63 R.A. Pickering und R.J. Angelici, Inorg. Chem., 20 (1981) 2977.
- 64 W. Hewertson und H.R. Watson, J. Chem. Soc., (1962) 1490.
- 65 R.B. King und J.C. Cloyd, J. Am. Chem. Soc., 97 (1975) 46, 53.
- 66 S.A. Butter und J. Chatt, Inorg. Synth., 15 (1974) 185.
- 67 H.C.E. McFarlane und W. McFarlane, Polyhedron, 2 (1983) 303.
- 68 E.P. Kyba, S.T. Liu und R.L. Harris, Organometallics, 2 (1983) 1877.
- 69 D.J. Darensbourg und R.L. Kump, Inorg. Chem., 17 (1978) 2680.
- 70 R.B. King und J.C. Cloyd, Inorg. Chem., 14 (1975) 1550.
- 71 C.C.J. Culvenor, W. Davies und K.H. Pausacker, J. Chem. Soc., (1946) 1050.
- 72 K. Kondo und A. Negishi, Tetrahedron, 27 (1971) 4821.
- 73 E.W. Abel, I.S. Butler und J.G. Reid, J. Chem. Soc., (1963) 2068.